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Abstract

Score-based diffusion models (SGMs) are a new class of generative models that revolve
around the estimation of the score function associated with a stochastic differential
equation. Subsequent to its acquisition, the approximated score function is then har-
nessed to simulate the corresponding time-reversal process, ultimately enabling the
generation of approximate data samples. The problem of establishing theoretical guar-
antees of convergence for diffusionmodels, that is to say the problem of estimating the
distance between the output distribution and the sought data distribution, is still open.
The main challenge is to quantify how the three sources of error entailed in each SGM
- the time discretization error, the score approximation error and the initialization error
- affect the quality of the returned samples. We present a novel method based on the
mixture of ideas coming from stochastic control and functional inequalities that allows
to derive simple, improved and sharp convergence bounds in KL applicable to any data
distribution with finite Fisher information with respect to the standard Gaussian distri-
bution. A joint work with Giovanni Conforti and Alain Durmus (Conforti et al. [2023]).

Score-Based Generative Models (SGMs)

Creating noise from data is easy, creating data from noise is generative modeling.
(Song et al. [2020])

Goal of a SGM. Generate new samples similar to data ones x ∼ µ? ∈ P(Rd).
Strategy. First, destruct progressively data by injecting noise:

d
−→
X t = b(

−→
X t)dt + ΣdBt , t ∈ [0, T ] , with

−→
X 0 ∼ µ? , (1)

with (
−→
X t)t∈[0,T ] d-dimensional ergodic diffusion associated to a Markov semi-group

(Pt)t∈[0,T ] with a unique stationary distribution µ0. Second, reverse this process for sam-
ple generation, that is consider the solution to

d
←−
X t = (−b(

←−
X t) + ΣΣT∇ log−→p T−t(

←−
X t))dt + ΣdBt , t ∈ [0, T ] , with

←−
X 0 ∼ µ?PT . (2)

Computational challenges to deal with

1. One cannot obtain i.i.d. samples from µ?PT ;

2. The score of the forward process, ∇ log−→p T−t(x), which appears in (2), is intractable;

3. The continuous dynamics can not be simulated.

Solutions adopted.

1. Samples from the stationary distribution µ0 of (1) are used instead;

2. An estimator sθ?(t, x) is used instead. Among the neural networks
{(t, x) 7→ sθ(t, x)}θ∈Θ, one picks the one that corresponds to the minimizer θ? of the
score-matching objective

θ 7→
∫ T

0
E
[∥∥∥sθ(t,

−→
X t)−ΣΣT∇ log−→p t(

−→
X t)

∥∥∥2
]

dt ;

3. Discretizations schemes are used. Given a partition {0 = t0 < t1, ... < tN = T} of [0, T ]
with meshes {hk}k one considers the process (XE

t )t∈[0,T ] defined recursively on the
intervals [tk, tk+1] by
Euler-Maruyama (EM) discretization scheme:

dXE
t = {−b(XE

tk
) + sθ?(T − tk, XE

tk
)}dt + ΣdBt , t ∈ [tk, tk+1] , with XE

0 ∼ µ0 ;

Euler Exponential Integrator (EI) scheme:

dXθ?

t = {−b(Xθ?

t ) + sθ?(T − tk, Xθ?

tk
)}dt + ΣdBt, t ∈ [tk, tk+1] , with Xθ?

0 ∼ µ0 . (3)

Resulting errors.

1. Initialization error;
2. Score approximation error;
3. Discretization error.

Main question

How do the various sources of error affect the quality of the returned samples?

Related literature:

Main strategies adopted up to now:

assuming smoothness on the data distribution, compare µ? with the law at time T
of the approximated backward process;

introducing an early stopping rule, compare µ?Pδ with the law at time T − δ of the
approximated backward process.

Our setting

Consider the Ornstein–Uhlenbeck (OU) as forward process, so that (1) turns into

d
−→
X t = −

−→
X tdt +

√
2dBt , t ∈ [0, T ] , with

−→
X 0 ∼ µ? , (4)

µ0 ≡ γd and (2) turns into

d
←−
X t = (−

←−
X t + 2∇ log p̃T−t(

←−
X t))dt +

√
2dBt , t ∈ [0, T ] , with

←−
X ∼ µ?PT , (5)

where p̃t(x) := −→p t(x)/γd(x) . Also, consider the EI as discretization scheme, so that (3)
turns into

dXθ?

t = (−Xθ?

t + s̃θ?(T − tk, Xθ?

tk
))dt +

√
2dBt , t ∈ [tk, tk+1] , with Xθ?

0 ∼ γd.

where s̃θ?(t, x) is an estimator of p̃t(x) and {tk}k=1,...N a partition of [0, T ] withmeshes hk :=
tk − tk−1.

Our contribution

Our assumption on the data distribution.

H1 µ?� γd and µ? has finite relative Fisher information against γd, i.e.

I (µ?|γd) =
∫ ∥∥∥∥∇ log

(
dµ?

dγd

)∥∥∥∥2
dµ? < +∞ .

Our assumptions on the score approximation.

Either

H2 There exist ε2 > 0 and θ? ∈ R such that

1
T

N−1∑
k=0

hk+1E
[∥∥∥s̃θ?(T − tk,

−→
X T−tk

)− 2∇ log p̃T−tk
(
−→
X T−tk

)
∥∥∥2
]
≤ ε2 .

or

H3 There exist ε2 > 0 and θ? ∈ R such that, for any k ∈ {0, ..., N − 1},

E
[∥∥∥s̃θ?(T − tk,

−→
X T−tk

)− 2∇ log p̃T−tk
(
−→
X T−tk

)
∥∥∥2
]
≤ ε2E

[∥∥∥2∇ log p̃T−tk
(
−→
X T−tk

)
∥∥∥2
]

.

[Conforti et al., 2023, Theorem 2.1]

Let T ≥ 1, h ≤ 1 and assume H1-H2. Consider the EI scheme (Xθ?

t )t∈[0,T ] with constant
step size h > 0. Denoting for any t ∈ [0, T ] by pθ?

t the distribution of Xθ?

t we have that

KL(µ?|pθ?

T ) . e−2T KL(µ?|γd) + C(T, ε) + hI (µ?|γd) , (6)

where C(T, ε) = Tε2. Moreover, the above bound also holds if we replace the term
KL(µ?|γd)e−2T with (M2

2 + d)e−T , where M2
2 is the second-order moment of µ?.

Also, if instead of H2, H3 holds, then (6) holds with C(T, ε) = ε2I (µ?|γd).

Our method

Sketch of the proof.

We interpreted the process Yt := 2∇ log p̃T−t(
←−
X t) as the optimal drift in a stochastic

control problem associated to (4);
We studied its dynamics and derived the adjoint equation, that is

dYt = Ytdt +
√

2∇YtdBt , t ∈ [0, T ] ,

plus the exponential growth of g(t) := E[||Yt||2] , i.e.the exponential decay of the
Fisher along the semi-group associated to (4):
We decomposed the KL as

KL(
←−
P |P θ?

) = KL(−→p T |γd) +
N−1∑
k=0

1
4

∫ (k+1)h

kh
E
[∥∥∥s̃θ?(T − kh,

←−
X kh)− Yt

∥∥∥2
]

dt ,

and used all the information available to bound the (RHS).

Literature comparison

Table: Bounds on KL(µ∗|pθ?

T ) for the OU-based SGM stemming from EI with constant step-size.

Assumptions Related Error
on the data References bound

H1
M2

2 < +∞ [Chen et al., 2023, Theorem 2.1] (M2
2 + d)e−T + Tε2 + dhL2T

∇ log−→p t L− Lipschitz
H1

[Conforti et al., 2023, Theorem 2.1] (M2
2 + d)e−T + Tε2 + h(dL + M2

2)
I (µ?|γd) ≤ dL + M2

2
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