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Context and scientific objectives

The capability of modern robots to achieve dexterous manipulation and agile
locomotion remains limited.

Goal: Learn new skills efficiently and develop robust and versatile controllers
for robotics.
Intuition: Humans solve complex tasks without thinking about the movement
of each of their muscles separately.
↪→ exploits motor synergies to control several degrees of freedom

simultaneously like central-nervous system

↪→ serial and parallel composition of skills in a hierarchic fashion

Optimal control (OC): impressive results (acrobatic motions by Boston
Dynamics [1]), but online re-planning and robustness to uncertainties or external
perturbations remain very challenging.

Reinforcement learning (RL): flexible and robust against uncertainties,
enables discovering of complex and rich solutions in the face of contact
interactions [2], but methods remain data-intensive.

Should we learn or optimize? Leverage the advantages of both worlds:

▶ founded on the same mathematical principles (Bellman and
Hamilton-Jacobi-Bellman equations) [3]

▶ how to combine RL policies and optimal controllers? High-level vs. low-level
decisions and controls

▶ learn from limited data on a physical robot and apply policy efficiently to
complex robotic tasks

This thesis is an interdisciplinary project with three main scientific axes: control,
perception, and experimentation on simulated and real physical robots.

Advanced robotic platforms

▶ Experimental validation in simulation → need to overcome sim-to-real gap

▶ Conduct experiments on state-of-the-art robotic platforms for both
locomotion and manipulation

▶ Lay a new computational framework for robot control on real hardware

Figure: Biped digit, dexterous hands, quadruped solo, UR5 arm and exoskeleton atalante.

First-order trajectory optimization

Goal: fast trajectory optimization for systems with non-smooth dynamics.

▶ Build differentiable simulator based on pinocchio [4]

▶ Use randomized smoothing [5] with automatic noise scheduling

▶ Compare against state-of-the-art RL algorithms using xpag [6]

Figure: Randomized smoothing applied to cart-pole system with dry friction.

Randomized smoothing

published in Nonlinear Analysis: Hybrid Systems, International Federation of
Automatic Control (IFAC) journal, 2024 [5]

▶ Optimal control (OC) algorithms take advantage of the derivatives of the
dynamics to control physical systems efficiently

▶ Robotic problems can have non-smooth dynamics

▶ Discontinuities in the derivatives or the presence of non-informative gradients

↪→ introduce randomization in the optimization

↪→ more exploratory behavior by collecting samples in the neighborhood
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Figure: Lifting a cube exhibits non-smooth behavior and zero-gradient issues.

Gaussian formulation

The optimization problem can be written as:

u⃗∗ = argmin
u⃗∈{U0,...,UT−1}

LT(u⃗), (1)

with loss function

LT(u⃗) = ∥qT(u⃗)− qtarget∥2 + α∥u⃗∥2, where∥u⃗∥2 =
T−1∑
i=0

∥ui∥2 (2)

and the system dynamics are defined recursively xt+1 = f (xt, ut), where x = [q, q̇].

With the energy of the system LT , we obtain an (unnormalized) probabilistic
Gibbs distribution

g(u⃗) ∝ exp

(
−LT(u⃗)

τ

)
, (3)

where τ is the temperature and function g(u⃗) should be maximized.
In general, the KL divergence for two distributions is defined as

DKL(P∥G ) =
∫ ∞

−∞
p(u) log

(
p(u)

g(u)

)
du = Eu∼Uθ

[log p(u)− log g(u)] .

Figure: Randomized smoothing with Gaussians for 1D toy example. Showing iterations 0, 10,
50, 100, 200, and 300.
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